



# SUBJECT: PHYSICAL SCIENCES

# GRADE 12

# **AUTUMN CLASSSES**

# **TEACHER AND LEARNER CONTENT MANUAL**

# Topics

Organic Chemistry (Nomenclature, Physical Properties and Reactions)

# PHYSICAL SCIENCES PROGRAMME FOR 2024 AUTUMN CLASSES

| PAPER              | TOPICS                 | TOTAL MARKS | WEIGHTING |  |
|--------------------|------------------------|-------------|-----------|--|
| 5 DAYS             |                        |             |           |  |
| PAPER 2: CHEMISTRY | Organic Chemistry      |             |           |  |
|                    | 1. Nomenclature        | ± 22        | ± 15 %    |  |
|                    | 2. Physical Properties | ± 15        | ± 10%     |  |
|                    | 3. Reactions           | ±18         | ±13       |  |
| TOTAL              |                        | ± 55        | ± 38%     |  |
|                    |                        |             |           |  |

Pre-test and Post-test to be administered since it's a revision of Term 1 & 2.

| TOPIC: O | rganic Chemistry                   |        |
|----------|------------------------------------|--------|
| 0        | Examination guideline and Outcomes | 4 20   |
| 0        | Important terms and definitions    | 4 - 39 |
| 0        | Activities                         |        |

# **ICON DESCRIPTION**



# DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 1 (PHYSICS)

# TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

| NAME/NAAM                                                          | SYMBOL/SIMBOOL | VALUE/WAARDE                            |
|--------------------------------------------------------------------|----------------|-----------------------------------------|
| Acceleration due to gravity<br>Swaartekragversnelling              | g              | 9,8 m⋅s <sup>-2</sup>                   |
| Universal gravitational constant<br>Universele gravitasiekonstante | G              | 6,67 x 10 <sup>-11</sup> N⋅m²⋅kg⁻²      |
| Radius of the Earth<br>Radius van die Aarde                        | Re             | 6,38 x 10 <sup>6</sup> m                |
| Mass of the Earth<br>Massa van die Aarde                           | Me             | 5,98 x 10 <sup>24</sup> kg              |
| Speed of light in a vacuum<br>Spoed van lig in 'n vakuum           | С              | 3,0 x 10 <sup>8</sup> m⋅s <sup>-1</sup> |

# **ORGANIC CHEMISTRY: EXAMINATION GUIDELINES**



> Define organic molecules as molecules containing carbon atoms.

# Organic molecular structures – functional groups, saturated and unsaturated structures, isomers

- Write down condensed structural formulae, structural formulae, molecular formulae, and IUPAC names (up to 8 carbon atoms) for:
  - 1. Alkanes (no ring structures)
  - 2. Alkenes (no ring structures)
  - 3. Alkynes
  - 4. Halo-alkanes (primary, secondary and tertiary halo alkanes; no ring structures)
  - 5. Alcohols (primary, secondary and tertiary alcohols)
  - 6. Carboxylic acids
  - 7. Esters
  - 8. Aldehydes
  - 9. Ketones
- > Know the following definitions/terms:
  - 1. **Molecular formula:** A chemical formula that indicates the element and numbers of each of the atoms in a molecule. Example: C<sub>4</sub>H<sub>8</sub>O
  - 2. **Structural formula:** A structural formula of a compound shows which atoms are attached to which within the molecule. Atoms are represented by their chemical symbols and lines are used to represent ALL the bonds that hold the atoms together. Example:



3. **Condensed structural formula:** This notation shows the way in which atoms are bonded together in the molecule but DOES NOT SHOW ALL bond lines. Example:



- 4. Hydrocarbon: Organic compounds that consist of hydrogen and carbon only.
- 5. **Homologous series:** A series of organic compounds that can be described by the same general formula OR in which one member differs from the next with a CH<sub>2</sub> group.
- 6. **Saturated compounds**: Compounds in which there are no multiple bonds between C atoms in their hydrocarbon chains
- 7. **Unsaturated compounds**: Compounds with one or more multiple bonds between C atoms in their hydrocarbon chains

Page **4** of **40** 

# **IMPORTANT TERMS AND DEFINITIONS**

| N                                                                                 | IATTER AND MATERIALS: ORGANIC MOLECULES                                                                                                                                                                                              |  |  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Boiling point                                                                     | The temperature at which the vapour pressure of a liquid equals atmospheric pressure.                                                                                                                                                |  |  |
| Chain isomers                                                                     | Compounds with the same molecular formula, but different types of chains.                                                                                                                                                            |  |  |
| Condensed structural                                                              | A formula that shows the way in which atoms are bonded together in the                                                                                                                                                               |  |  |
| formula                                                                           | molecule but DOES NOT SHOW ALL bond lines.                                                                                                                                                                                           |  |  |
| Elimination reaction                                                              | A reaction in which elements of the starting material are "lost" and a double bond is formed.                                                                                                                                        |  |  |
| Functional group                                                                  | A bond or an atom or a group of atoms that determine(s) the physical and chemical properties of a group of organic compounds.                                                                                                        |  |  |
| Functional isomers                                                                | Compounds with the same molecular formula, but different functional groups.                                                                                                                                                          |  |  |
| Homologous series                                                                 | A series of organic compounds that can be described by the same general formula and that have the same functional group.<br>OR A series of organic compounds in which one member differs from the pert with a CH <sub>2</sub> group. |  |  |
| Hydrocarbon                                                                       | Organic compounds that consist of hydrogen and carbon only.                                                                                                                                                                          |  |  |
| Intermolecular force                                                              | Forces between molecules that determine physical properties of compounds.                                                                                                                                                            |  |  |
| London force                                                                      | A weak intermolecular force between non-polar molecules.                                                                                                                                                                             |  |  |
| Melting point The temperature at which the solid and liquid phases of a substance |                                                                                                                                                                                                                                      |  |  |
| Molecular formula                                                                 | A chemical formula that indicates the type of atoms and the correct number of each in a molecule, e.g., CH <sub>4</sub> .                                                                                                            |  |  |
| Organic chemistry                                                                 | Chemistry of carbon compounds.                                                                                                                                                                                                       |  |  |
| Positional isomer                                                                 | Compounds with the same molecular formula, but different positions of the side chain, substituents or functional groups on the parent chain.                                                                                         |  |  |
| Primary alcohol                                                                   | The C atom bonded to the hydroxyl group is bonded to ONE other C atom.<br>Example:<br>$\begin{array}{c} H & H \\ H - C & -C \\ H & H \\ H & H \end{array} $                                                                          |  |  |
| Primary haloalkane                                                                | The C atom bonded to the halogen is bonded to ONE other C atom.<br>Example:<br>H H H<br>H-C C Br<br>H H                                                                                                                              |  |  |

| Homologous       | Structure of functional group                                               |                                                    |  |  |
|------------------|-----------------------------------------------------------------------------|----------------------------------------------------|--|--|
| series           | Structure                                                                   | Name/Description                                   |  |  |
| Alkanes          | -c $-c$ $-c$ $-c$ $-c$ $-c$ $-c$ $-c$                                       | Only C-H and C-C single bonds                      |  |  |
| Alkenes          | }c=c⟨                                                                       | Carbon-carbon<br>double bond                       |  |  |
| Alkynes          | -c≡c-                                                                       | Carbon-carbon<br>triple bond                       |  |  |
| Haloalkanes      | $- \begin{array}{c} I \\ - C \\ - X \\ I \\ (X = F, Cl, Br, I) \end{array}$ | Halogen atom<br>bonded to a C atom<br>in an alkane |  |  |
| Alcohols         | —с—о—н                                                                      | Hydroxyl group<br>bonded to a<br>saturated C atom  |  |  |
| Aldehydes        | с_н                                                                         | Formyl group                                       |  |  |
| Ketones          |                                                                             | Carbonyl group<br>bonded to two C<br>atoms         |  |  |
| Carboxylic acids | 0<br>Ш<br>—с—о-н                                                            | Carboxyl group                                     |  |  |
| Esters           |                                                                             | -                                                  |  |  |

# NOMENCLATURE AND STRUCTURE

# ORGANIC MOLECULES

|                                                                        | Saturated<br>Hydrocarbons                                           | Unsaturated<br>Hydrocarbons     | Unsaturated<br>Hydrocarbons  |
|------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------|------------------------------|
| Homologous Series                                                      | Alkanes                                                             | Alkenes                         | Alkynes                      |
| General Formula                                                        | CnH2n+2                                                             | C <sub>n</sub> H <sub>2n</sub>  | CnH2n-2                      |
| Functional Group                                                       | Only C-H and <b>C-C</b><br>single bonds<br>Alkanes have no multiple | Carbon-carbon<br>double bond    | Carbon-carbon<br>triple bond |
| Structural Formula<br>of the functional<br>group                       |                                                                     | }c=c⟨                           | -c≡c-                        |
| Example of<br>Structural Formula<br>of a Compound.                     | H H<br>H                                                            |                                 | н—с≡с—н                      |
| Example of the<br>Condescended<br>Structural Formula<br>of a Compound. | CH3CH3                                                              | CH <sub>2</sub> CH <sub>2</sub> | СНСН                         |
| Example of the<br>Molecular Formula<br>of a Compound.                  | $C_2H_6$                                                            | C <sub>2</sub> H <sub>4</sub>   | $C_2H_2$                     |
| Example of the<br>IUPAC Name of a<br>Compound.                         | Ethane                                                              | Ethene                          | Ethyne                       |





# WRITING IUPAC NAMES OF ORGANIC COMPOUNDS





Page **10** of **40** 

# WRITING STRUCTURAL FORMULAE FROM IUPAC NAMES

1.Identify the parent name in the IUPAC name. Draw a carbon skeleton with the number of C atoms indicated by the parent name.

2. Identify the functional group (suffix) or homologous series to which this compound belongs.

Use the number in front of the functional group (suffix) to place the functional on the correct C atom.

3. Identify the substituents (prefix). Use the number in front of each substituent to place the substituents on the correct C atoms.

4. Ensure that each C atom is surrounded by 4 bonds (lines indicating bonds).

5. Include H atoms at all open bonds after ensuring that each C atom is surrounded by 4 bonds.

6. All bonds should be shown. Do not draw any part of the molecule condensed e.g. –CH3.

7. As a final check ensure all C atoms form 4 bonds, all O atoms form 2 bonds and Hydrogen atoms form 1 bond.

Page **11** of **40** 



Step 3: Compare the energy needed to overcome intermolecular forces.

Comparing two compounds from the same homologous series:

Step 1: Compare the surface areas of the molecules.

**Step 2:** Compare the strength of intermolecular forces.

**Step 3:** Compare the energy needed to overcome intermolecular forces.



# INTERMOLECULAR FORCES

| Homologous series            |       | Type and s            | trength of<br>ular forces        |
|------------------------------|-------|-----------------------|----------------------------------|
| Alkanes<br>Alkenes           | AK    |                       |                                  |
| Alkynes                      | Ē,    |                       |                                  |
| Aldehydes                    | 5     |                       |                                  |
| Ketones                      | ces   | B C                   |                                  |
| Esters                       | oro   | s E                   |                                  |
| Haloalkanes                  | n f   | NC edi                |                                  |
| Alcohols<br>Carboxylic acids | Londo | Dipole<br>for<br>STRO | Hydrogen<br>bonding<br>STRONGEST |

#### London or dispersion forces

Weakest intermolecular forces – These forces are present between all molecules

#### **Dipole**-dipole forces

Stronger than London forces – between polar molecules (Aldehydes, Ketones, Esters, Haloalkanes, Alcohols and Carboxylic acids)

# Hydrogen bonds (special type of intermolecular force)

Strongest intermolecular forces between molecules in which H is bonded to O.

Alcohol & Carboxylic acid

# INTERMOLECULAR FORCES

| Homologous series            | i     | Type and s          | trength of<br>ular forces        |
|------------------------------|-------|---------------------|----------------------------------|
| Alkanes                      |       |                     |                                  |
| Alkynes                      | EAM   |                     |                                  |
| Aldehydes                    | M     |                     |                                  |
| Ketones                      | seo   | R Se                |                                  |
| Esters                       | for   | dipd<br>es<br>IGE   |                                  |
| Taloakaries                  | 5     | ON ON               |                                  |
| Alcohols<br>Carboxylic acids | Londe | Dipol<br>fc<br>STR( | Hydrogen<br>bonding<br>STRONGEST |

London or dispersion forces

Weakest intermolecular forces – These forces are present between all molecules

#### Dipole – dipole forces Stronger than London forces – between polar molecules (Aldehydes, Ketones, Esters, Haloalkanes, Alcohols and Carboxylic acids) Hydrogen bonds (special type of intermolecular force)

intermolecular force) Strongest intermolecular forces

between molecules in which H is bonded to O. Alcohol & Carboxylic acid

# Comparing two compounds from different homologous series:

Refer to the **TYPE** and the **STRENGTH** of intermolecular forces to explain the difference in boiling points between organic compounds:



# **Example 1**

#### Refer to the TYPE and the STRENGTH of intermolecular forces to explain the difference i points between: 1

Compounds A and B

#### The boiling point of propan-2-one is higher than that of propane

|   | COMPOUND]      | BOILING POINT (°C) | TYPE OF                                 | Between molecules of propane (A) are<br>London forces                                         |
|---|----------------|--------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------|
| A | Propane        | -42                | INTERMOLECULAR<br>FORCES                | • Between molecules of propan-2-one (B) are dipole-dipole forces in addition to London forces |
| в | Propan-2-one   | 56                 | STRENGTH OF<br>INTERMOLECULAR<br>FORCES | • Intermolecular forces in propan-2-one are stronger than those in propane                    |
| с | Propan-1-ol    | 97                 |                                         | • More energy is needed to break/                                                             |
| D | Propanoic acid | 141                | ENERGY                                  | overcome the intermolecular forces<br>in propan-2-one than in propane.                        |

# Why do carboxylic acids have stronger intermolecular forces than alcohols?





# Example 2

Refer to the TYPE and the STRENGTH of intermolecular forces to explain the difference in boiling points between: 1 Compounds C and D

Compounds C and D

The boiling point of propanoic acid is higher than that of propan-1-ol

| A | COMPOUND] Propane | BOILING POINT (°C)<br>-42 | TYPE OF<br>INTERMOLECULAR<br>FORCES | <ul> <li>Both propan-1-ol (C) and propanoic<br/>acid (D) have hydrogen bonds.</li> <li>Propan-1-ol (C) has one/less sites for<br/>hydrogen bonding</li> <li>Propanoic acid(D) has two/more sites<br/>for hydrogen bonding</li> </ul> |
|---|-------------------|---------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| в | Propan-2-one      | 56                        | STRENGTH OF                         | • Intermolecular forces in propanoic                                                                                                                                                                                                 |
| с | Propan-1-ol       | 97                        | INTERMOLECULAR<br>FORCES            | acid are stronger than those in propan-<br>1-ol                                                                                                                                                                                      |
| D | Propanoic acid    | 141                       | ENERGY                              | More energy is needed to overcome<br>the intermolecular forces in propanoic                                                                                                                                                          |
|   |                   |                           |                                     | acid than in propan-1-one.                                                                                                                                                                                                           |

# Surface area – chain length

# Methane, ethane, propane, butane, pentane, hexane, heptane, octane

> For compounds with the same functional group

- >The longer the carbon chain, the larger the surface area and the higher the boiling point/melting point and the lower the vapour pressure.
- Carbon chain length increases and therefore molecular mass increases from methane to octane.
- >Intermolecular forces increase with an increase in **molecular mass/ carbon chain length**.
- >The stronger the intermolecular forces, the more energy will be needed to overcome them (London/ dispersion/ induced dipole force).

# Comparing two compounds from the same homologous series:





# **Example 1**

Learners investigate factors that influence the boiling points. In their investigations they determine the boiling points of the first three alkanes.

#### 1. Fully explain why the boiling point increases from methane to propane.

| STRUCTURE                               | <ul> <li>The chain length / surface area increases.</li> </ul>                          |
|-----------------------------------------|-----------------------------------------------------------------------------------------|
| STRENGTH OF<br>INTERMOLECULAR<br>FORCES | <ul> <li>Strength of intermolecular<br/>forces/ London forces<br/>increases</li> </ul>  |
| ENERGY                                  | <ul> <li>More energy is needed to<br/>overcome the intermolecular<br/>forces</li> </ul> |



# Example 2

# Explain the trend in the boiling points from compound A to compound C.

The boiling point increases from compound A to compound C

|   | ISOMERS             | BOILING POINT<br>(°C) | STRUCTURE                               | <ul> <li>From A to C</li> <li>Less branched / larger surface area<br/>over which intermolecular forces act</li> </ul> |
|---|---------------------|-----------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| А | 2,2-dimethylpropane | 9                     | STRENGTH OF<br>INTERMOLECULAR<br>EORCES | <ul> <li>Strength of intermolecular<br/>forces/ London forces increases<br/>from A to C</li> </ul>                    |
| в | 2-methylbutane      | 28                    | TORCES                                  |                                                                                                                       |
| с | pentane             | 36                    | ENERGY                                  | More energy is needed to<br>overcome the intermolecular<br>forces from A to C                                         |

# **ORGANIC REACTIONS**

| REACTIONS OF ALKANES                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |  |  |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|
| Type of reaction                     | Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reaction conditions                    |  |  |
| Oxidation<br>(Combustion)            | $2C_6H_{14} + 19O_2 \rightarrow 12CO_2 + 14H_2O$<br>Alkane + oxygen $\rightarrow$ carbon dioxide + water + <b>energy</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Burns in<br>EXCESS oxygen              |  |  |
| <b>Substitution:</b><br>Halogenation | $H \xrightarrow{H} H \xrightarrow{H} $ | Heat OR sunlight                       |  |  |
| Elimination:<br>(thermal) cracking   | $H \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow C \longrightarrow H \longrightarrow H \longrightarrow H \longrightarrow H \longrightarrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | heat + high<br>pressure OR<br>catalyst |  |  |

Page **18** of **40** 





# A flow diagram should be used in class to show the difference between elimination, substitution and addition reactions.





Page **22** of **40** 



| ACTI | VITY 1 |                     | (30 Marks; 30 Minutes) |      |
|------|--------|---------------------|------------------------|------|
| 1.1  | Define | the term:           |                        |      |
|      | 1.1.1  | Organic molecule    |                        | (2)  |
|      | 1.1.2  | Homologous series.  |                        |      |
|      | 1.1.3  | Functional group    |                        | (2)  |
|      | 1.1.4  | Positional isomer   |                        | (2)  |
|      | 1.1.5  | Primary alcohol     |                        | (2)  |
|      | 1.1.6  | Tertiary haloalkane |                        | (2)  |
|      |        |                     |                        | (12) |

- 1.2 Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A–D) next to the question numbers (1.1 to 1.5) in the ANSWER BOOK, e.g. 1.6 E.
  - 1.2.1 Which one of the following compounds belongs to the same homologous series as  $C_3H_8$ ?
    - $A \qquad C_2H_2$
    - B C<sub>2</sub>H<sub>4</sub>
    - C C<sub>3</sub>H<sub>6</sub>
    - D C<sub>3</sub>H<sub>8</sub>

(2)

---- m

- 1.2.2 The EMPIRICAL FORMULA of hexanoic acid is ...
  - A C<sub>3</sub>H<sub>6</sub>O<sub>2</sub>
  - B C<sub>6</sub>H<sub>6</sub>O<sub>2</sub>
  - $C \qquad C_6 H_{12} O_2 \\$

#### D C<sub>3</sub>H<sub>6</sub>O





1.2.3 The name of the functional group of propanal is ...

- A Carboxyl
- B Carbonyl
- C Hydroxyl
- D Formyl

(2)

[18]



Page 25 of 40

Write down the:

| 1.1            | 1.1.1                | Name of the homologous series to which compound C belongs                                                                             | (1)                |
|----------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                | 1.1.2                | IUPAC name of compound A                                                                                                              | (3)                |
|                | 1.1.3                | Structural formula of a tertiary alcohol that is a structural isomer of compound B                                                    | (2)                |
| 1.2            | An alc<br>sulphu     | ohol and methanoic acid are heated in the presence of concentrated<br>iric acid to form an ester.                                     |                    |
|                | 1.2.1                | What is the role of the concentrated sulphuric acid in this reaction?                                                                 | (1)                |
|                | 1.2.2                | Write down the NAME or FORMULA of the inorganic product formed.                                                                       | (1)                |
| The e<br>molar | ester con<br>mass of | tains 6,67% hydrogen (H), 40% carbon (C) and 53,33% oxygen (O). The<br>f the ester is 60 g⋅mol-1. Use a calculation to determine its: | Э                  |
|                | 1.2.3                | Empirical formula                                                                                                                     | (5)                |
|                | 1.2.4                | Molecular Formula                                                                                                                     | (2)                |
| Write          | down th              | e:                                                                                                                                    |                    |
|                | 1.2.5                | Structural formula of methanoic acid                                                                                                  | (1)                |
|                | 1.2.6                | IUPAC name of the ester                                                                                                               | (2)<br><b>[18]</b> |

# ACTIVITY 1 B

1.2

#### (25 Marks; 20 Minutes)



Study the table below and answer the questions that follow.

1.1 1.1.1 Define the following terms:

| (a)   | Organic molecules                                                                                                                   | (2)  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------|------|
| (b)   | Hydrocarbon                                                                                                                         | (2)  |
|       | Write down the:                                                                                                                     |      |
| 1.2.1 | Letter that represents an UNSATURATED hydrocarbon.                                                                                  | (1)  |
| 1.2.2 | IUPAC name of compound A                                                                                                            | (2)  |
| 1.2.3 | IUPAC name of the POSITIONAL isomer of compound B                                                                                   | (2)  |
| 1.2.4 | IUPAC name of compound D                                                                                                            | (2)  |
| 1.2.5 | Balanced equation, using MOLECULAR FORMULAE for the<br>complete combustion of compound A                                            | (2)  |
| 1.3.  | The formula C₄H₀O represents two compounds that are functional isomers of each other.                                               |      |
| 1.3.1 | Define the term functional isomer                                                                                                   | (2)  |
| 1.3.2 | Write down the STRUCTURAL FORMULAE of each of these two FUNCTIONAL isomers.                                                         | (4)  |
| 1.3.3 | A 2 g sample of compound E contains 1,09 g carbon and 0,18 g hydrogen. The molecular mass of compound E is 88 g·mol <sup>-1</sup> . | (6)  |
|       |                                                                                                                                     | [25] |



# ACTIVITY 2.1 -2.2

# (18 Marks; 18 Minutes)

The letters A to H in the table below represent eight organic compounds.



#### 2.1 Write down the IUPAC name of:

| 2.1.1 | Compound A                                 | (2) |
|-------|--------------------------------------------|-----|
| 2.1.2 | Compound B                                 | (2) |
| 2.1.3 | Compound C                                 | (2) |
| 2.1.4 | Compound D                                 | (2) |
| 2.1.5 | Draw the :STRUCTURAL formula of compound G | (2) |
|       |                                            |     |

(10)

Page **28** of **40** 

#### **ACTIVITY 2.2**

2.2 Write down the:

| 2.2.1 | HOMOLOGOUS SERIES to which compound <b>B</b> belongs.                                             | (1) |
|-------|---------------------------------------------------------------------------------------------------|-----|
| 2.2.2 | GENERAL FORMULA to which compound <b>F</b> belongs.                                               | (1) |
| 2.2.3 | NAME of the functional group of compound <b>C</b> .                                               | (1) |
| 2.2.4 | STRUCTURAL FORMULA of the functional group of compound ${f D}$                                    | (1) |
|       | STRUCTURAL FORMULA of the functional isomer of compound <b>H</b> .                                | (2) |
| 2.2.5 | Is compound <b>D</b> , a PRIMARY, SECONDARY or TERTIARY haloalkane? Give a reason for the answer. | (2) |
|       |                                                                                                   | (8) |

#### **ACTIVITY 2.3**

#### (4 Marks; 3 Minutes)

2.3 Next to each letter, A to F, in the table below is the molecular formula of an organic compound.

| Α | C₂H₅Br                          | в | C <sub>2</sub> H <sub>4</sub>   |
|---|---------------------------------|---|---------------------------------|
| С | C <sub>4</sub> H <sub>10</sub>  | D | C <sub>2</sub> H <sub>6</sub> O |
| Е | C <sub>3</sub> H <sub>6</sub> O | F | C3H6O2                          |

Choose a molecular formula above that represents an organic compound below. Write down only the letter (A to F) next to the question numbers.

|       |                            | (4) |
|-------|----------------------------|-----|
| 2.3.4 | An aldehyde                | (1) |
| 2.3.3 | An unsaturated hydrocarbon | (1) |
| 2.3.2 | An alcohol                 | (1) |
| 2.3.1 | A haloalkane               | (1) |

# **ACTIVITY 2.4**

#### (10 Marks; 10 Minutes)

2.4 Compound E reacts with another organic compound X to form Compound H.



| ACTIVITY 2.5 (7 Marks; 7 |                                                                             | (7 Marks; 7 Minutes) |      |
|--------------------------|-----------------------------------------------------------------------------|----------------------|------|
|                          |                                                                             |                      | (10) |
| 2.4.5                    | FORMULA of an inorganic product forme                                       | d for this reaction. | (1)  |
| 2.4.4                    | Write down the IUPAC name of compoun                                        | d <b>X</b> .         | (1)  |
| 2.4.3                    | Write down the balanced equation using s for the reaction that takes place. | STRUCTURAL FORMULA   | (5)  |
| 2.4.2                    | State the TWO reaction conditions for this                                  | s reaction.          | (2)  |
| 2.4.1                    | What type of reaction takes place here?                                     |                      | (1)  |

2.5 Compound **B** is a straight chain compound that undergoes the following exothermic reaction:

| В   | CxHy                  |                   |                      |
|-----|-----------------------|-------------------|----------------------|
| 2Cx | Hy + 25O <sub>2</sub> | 16CO <sub>2</sub> | + 18H <sub>2</sub> O |

2.5.1 Besides being exothermic, what type of reaction is represented (1)above? State one reaction condition for this reaction. 2.5.2 (1) 2.5.3 Determine the MOLECULAR FORMULA of compound B (1) The reaction above takes place in a closed container at a constant temperature higher than 100 °C and at constant pressure. 2.5.3 Calculate the TOTAL VOLUME of gas formed the container when (4) 50cm3of CxHy reacts completely with oxygen.

(7)

#### **ACTIVITY 2.6**

#### (5 Marks; 5 Minutes)

A laboratory assistant uses bromine water to distinguish between Compound A(alkane) and B(alkene). She adds bromine water to a sample of each in two different test tubes. She observes that one compound decolourises the bromine water immediately, whilst the other one only reacts after placing in direct sunlight.

#### 2.6

Write down the:

2.6.1 Letter (A or B) of the compound that will immediately decolourise the (1)bromine water 2.6.2 Type of reaction that takes place in the test tube containing (1)compound **A** 2.6.3 Type of reaction that takes place in the test tube containing (1)compound **B** 2.6.4 Structural formula of the organic product formed in the test tube (2) containing compound B

#### **ACTIVITY 3**

#### (10 Marks; 10 Minutes)

The relationship between boiling point and the number of carbon atoms in straight chain molecules of alkanes, carboxylic acids and alcohols is investigated. Curves P, Q and R are obtained.



- 3.1 Define the term boiling point.
- 3.2 For curve **P**, write down a conclusion that can be drawn from the above results
- 3.3 Identify the curve (**P**, **Q** or **R**) that represents each of the following:

3.3.1 Alkanes

(1)

(2)

(2)

(5)

# 3.3.2 Carboxylic acids (1) 3.4 Explain the answer to QUESTION 3.3.2 by referring to the: Types of intermolecular forces present in alkanes, carboxylic acids and alcohols Relative strengths of these intermolecular forces Energy needed (4)

#### **ACTIVITY 4.1**

#### (5 Marks; 5 Minutes)

[10]

4.1 Compound F reacts at high pressure and high temperature to form compounds P and Q as given below.



Write down the:

|       |                                                       | [5] |
|-------|-------------------------------------------------------|-----|
| 4.1.4 | Molecular formula of compound P.                      | (1) |
| 4.1.3 | IUPAC name of compound <b>Q</b> .                     | (2) |
| 4.1.2 | Homologous series to which compound <b>P</b> belongs. | (1) |
| 4.1.1 | Type of reaction that takes place .                   | (1) |

#### **ACTIVITY 4.2**

#### (5 Marks; 5 Minutes)

4.2 Compound C (C<sub>10</sub>H<sub>22</sub>) reacts at high temperatures and pressures to form a three-carbon alkene **Y** and an alkane **Z**, as shown below.

#### $C_{10}H_{22} \rightarrow \textbf{Y} + \textbf{Z}$

Write down the:

| 4.2.1 | Type of reaction that takes place.           | (1) |
|-------|----------------------------------------------|-----|
| 4.2.2 | Two reaction conditions for this reaction.   | (2) |
| 4.2.3 | Which one of the two compounds is saturated? | (1) |

Page 32 of 40

4.2.4 IUPAC name of compound Z. (2)
4.2.5 Molecular formula of compound X. (1)
ADDITIONAL ACTIVITIES
ACTIVITY 1 (37 Marks; 40 Minutes)

The letters A to H in the table below represent eight organic compounds.

| A | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                          | в | 3-methylbutanal                                                   |
|---|-------------------------------------------------------------------------------|---|-------------------------------------------------------------------|
| с | 3-methylbutan-2-one                                                           | D | C <sub>2</sub> H <sub>4</sub>                                     |
| Е | CH <sub>3</sub> CH <sub>2</sub> C(CH <sub>3</sub> )CH <sub>3</sub><br> <br>OH | F | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> COCH <sub>3</sub> |
| G | н—с—с=ссн<br> ссн<br> н                                                       | Η | 3-methylpentane                                                   |

# 1.1 Write down the IUPAC name of: (3) 1.1.1 Compound A (3) 1.1.3 Compound E (2) 1.2 Write down the STRUCTURAL FORMULA of: (3) 1.2.1 Compound B (3) 1.2.2 Compound C (2)

Page **33** of **40** 

1.3 For compound **H**, Write down the:

|     |        | /ITY 2 (37 Marks; 40 Minutes)                                                           |      |
|-----|--------|-----------------------------------------------------------------------------------------|------|
|     |        |                                                                                         | [37] |
|     | 1.5.3  | Is compound A, a PRIMARY, SECONDARY or TERTIARY alcohol? Give a reason for the answer.  | (2)  |
|     | 1.5.2  | NAME of the functional group of this compound.                                          | (1)  |
|     | 1.5.1  | GENERAL FORMULA of the Homologous series to which it belongs.                           | (1)  |
| 1.5 | For co | mpound E, Write down the:                                                               |      |
|     | 1.4.4  | Letters that represent TWO organic compounds that are functional isomers of each other. | (1)  |
|     | 1.4.3  | Letter of a compound which belongs to the same homologous series as compound <b>F</b>   | (1)  |
|     | 1.4.2  | STRUCTURAL FORMULA of the functional group of compound <b>F.</b>                        | (1)  |
|     | 1.4.1  | HOMOLOGOUS SERIES to which compound <b>B</b> belongs.                                   | (1)  |
| 1.4 | Write  | down the:                                                                               |      |
|     | 1.3.3  | Structural formula of its CHAIN isomer.                                                 | (2)  |
|     | 1.3.2  | IUPAC name of its POSITIONAL isomer.                                                    | (2)  |
|     | 1.3.1  | Is this a SATURATED or UNSATURATED hydrocarbon? Give a reason for your answer.          | (2)  |

Three compounds are used to investigate one of the factors that influences boiling

points. The results obtained are shown in the table below.

|   | COMPOUND        | MOLECULAR MASS (g·mol <sup>-1</sup> ) | BOILING POINT (°C) |
|---|-----------------|---------------------------------------|--------------------|
| X | Ethyl ethanoate | 88                                    | 77                 |
| Y | Pentan-1-ol     | 88                                    | 137                |
| Z | Butanoic acid   | 88                                    | 165                |

2.1 For this investigation, write down the following:

|       | /ITY 3 (37 Marks; 40 Minutes)                                                                                                                       |      |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|
|       |                                                                                                                                                     | [23] |
| 2.7   | Will the boiling points of the chain isomer of compound Y be HIGHER<br>THAN, LOWER THAN or EQUAL TO that of compound Y? Fully<br>explain the answer | (4)  |
| 2.6   | Which ONE of the compounds (X, Y or Z) has the highest vapour pressure? Give a reason for the answer.                                               | (2)  |
| 2.5   | Refer to the intermolecular forces present in compounds Y and Z, and FULLY explain the difference in boiling points, as shown in the table.         | (4)  |
|       | Explain this observation by referring to the TYPE of INTERMOLECULAR FORCES present in each of these compounds.                                      |      |
| 2.4   | The boiling point of pentan-1-ol is higher than that of ethyl ethanoate.                                                                            | (4)  |
| 2.3   | Name the type of Van der Waals forces between molecules of ethyl ethanoate.                                                                         | (1)  |
| 2.2   | Is this a fair investigation? State only YES or NO.<br>Refer to the data in the table and give a reason for the answer.                             | (2)  |
| 2.1.5 | Conclusion that can be drawn from the above results.                                                                                                | (2)  |
| 2.1.4 | Investigative question.                                                                                                                             | (2)  |
| 2.1.3 | Controlled variable.                                                                                                                                | (1)  |
| 2.1.2 | Dependent variable.                                                                                                                                 | (1)  |
| 2.1.1 | Independent variable.                                                                                                                               | (1)  |

#### During a practical investigation the boiling points of the first six straight-chain

ALKANES were determined and the results were recorded in the table below.

| ALKANE  | MOLECULAR<br>FORMULA           | BOILING POINT<br>(°C) |
|---------|--------------------------------|-----------------------|
| Methane | CH₄                            | -164                  |
| Ethane  | C <sub>2</sub> H <sub>6</sub>  | -89                   |
| Propane | C <sub>3</sub> H <sub>8</sub>  | -42                   |
| Butane  | C <sub>4</sub> H <sub>10</sub> | -0,5                  |
| Pentane | $C_{5}H_{12}$                  | 36                    |
| Hexane  | C <sub>6</sub> H <sub>14</sub> | 69                    |

For this investigation, write down the following:

| 3.1.1 | Dependent variable.                                                                                                                                  | (1) |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.1.2 | Independent variable.                                                                                                                                | (1) |
| 3.1.3 | Controlled variable.                                                                                                                                 | (1) |
| 3.1.4 | Investigative question.                                                                                                                              | (2) |
| 3.1.5 | Suitable hypothesis.                                                                                                                                 | (2) |
| 3.1.6 | Conclusion that can be drawn from the above results.                                                                                                 | (2) |
| 3.2   | Write down the NAME of an alkane that is a liquid at 25 °C.                                                                                          |     |
| 3.3   | Fully explain why the boiling point increases from methane to hexane.                                                                                | (3) |
| 3.4   | Is this a fair investigation? Choose YES or NO.<br>Give a reason for the answer.                                                                     | (2) |
| 3.5   | Write down the type of Van der Waals force that occurs between these organic compounds.                                                              | (1) |
| 3.6   | Which compound has the higher vapour pressure? Give the reason for the answer.                                                                       | (2) |
| 3.7   | Does the vapour pressure of the alkanes INCREASE or DECREASE with an increase in the number of carbon atoms?                                         | (1) |
| 3.8   | Will the boiling points of the structural isomers of hexane be HIGHER<br>THAN,<br>LOWER THAN or EQUAL TO that of hexane? Fully explain the<br>answer | (4) |
| Hexar | he is now compared to 2,2-dimethylbutane.                                                                                                            |     |
| 3.8.1 | Is the molecular mass of hexane GREATER THAN, LESS THAN or EQUAL to that of 2,2-dimethylbutane?                                                      | (2) |
| 3.8.2 | Is the boiling point of 2,2-dimethylbutane HIGHER THAN,                                                                                              | (4) |

Page **36** of **40** 

LOWER THAN or EQUAL TO that of hexane? Fully explain the answer

# **ACTIVITY 4**

# (33 Marks; 35 Minutes)

----

The letters A to E in the table below represent four organic compounds.



|     | 4.1.1             | Compound A                                                                                 | (2)      |
|-----|-------------------|--------------------------------------------------------------------------------------------|----------|
|     | 4.1.2             | Compound B                                                                                 | (3)      |
|     | 4.1.3             | Compound C                                                                                 | (2)      |
| 4.2 | Write             | down the STRUCTURAL FORMULA of:                                                            |          |
|     | 4.2.1             | Compound A                                                                                 | (2)      |
|     | 4.2.2             | Compound D                                                                                 | (2)      |
| 4.3 | Compou<br>down th | and <b>A</b> reacts with another organic compound <b>Z</b> to form compound <b>D</b><br>e: | ). Write |
|     | 4.3.1 T           | ype of reaction that takes place.                                                          | (1)      |

Page **37** of **40** 

4.3.2 Homologous series to which compound **Z** belongs. (1)

- 4.3.3 STRUCTURAL FORMULA of compound **Z**. (2)
- 4.4 Write down the name of the functional group of compound **C**. (1)
- 4.5 The organic compound below has one positional isomer and one functional isomer.



For this compound, write down the:

- 4.5.1 IUPAC name of its POSITIONAL isomer
- 4.5.2 The homologous series to which the FUNCTIONAL isomer belongs. (1)
- 4.5.3 Structural formula of its FUNCTIONAL isomer
- 4.6 The organic compound below has one positional isomer and one chain isomer.



For this compound, write down the:

- 4.6.1 IUPAC name (2)
- 4.6.2 IUPAC name of its POSITIONAL isomer
  - 4.6.3 Structural formula of its CHAIN isomer
- 4.7 Study the structural formula below



For this compound, write down the:

(1)

(2)

(2)

(2)

|       |                                                                         | [33] |
|-------|-------------------------------------------------------------------------|------|
| 4.7.4 | STRUCTURAL FORMULA of its straight chain (unbranched) functional isomer | (2)  |
| 4.7.3 | IUPAC name of the organic acid used in its preparation                  | (2)  |
| 4.7.2 | IUPAC name                                                              | (2)  |
| 4.7.1 | Homologous series to which it belongs                                   | (1)  |

| Bibliography                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Books and Journals                                                                                                                                                    |
| <ul> <li>B. Bhon. A their of violation: 2010.</li> <li>C. Ober and D. Diler. "Writing interesting orbids". In: The Journal of<br/>Bylanuae (Dec. 1, 2003).</li> </ul> |
| Electronic Ressources                                                                                                                                                 |
| <li>[3] A. Andare, Paragraphic, Chi. http://www.mample.org/philed-m-<br/>03/06/2013.</li>                                                                             |

# BIBLIOGRAPHY

Department of Basic Education 2013-2021. The Curriculum Assessment and Policy Statement National and Provincial question papers.

Department of Basic Education 2021. The Curriculum Assessment and Policy Statement examination guideline. Pretoria: Government Printing Works.

https://www.siyavula.com/read/science/grade-12/organic-molecules

Learner Guide Physical Sciences Organic molecules developed by Free State province, JENN Training and Consultancy and University of Free State.

National Senior Certificate, 2016 – 2021 diagnostic reports. Pretoria: Government Printing Works.