

SUBJECT: MATHEMATICS

CONTENT: ALGEBRA, EQUATIONS, AND INEQUALITIES

ACTIVITY MANUAL

LEARNER/TEACHER MANUAL

Algebra, equations, and inequalities

JENN TRAINING: CONTENT MANUAL TEACHER/LEARNERS:

CONTENTS	PAGE
PART 1: Quadratic equations	2
PART 2: Quadratic inequalities	2
PART 3: Exponential equations	3
PART 4: Surd equations	3
PART 5: Simultaneous equations	3
PART 6: Nature of roots	4
PART 7: Fusion	5
<u>PART 8</u> : More on Algebra, equations, and inequalities	6 - 11

Algebra, Equations and Inequalities

Outline :

Simplify expressions and solve equations using the laws of exponents for rational exponents where

$$x^{\frac{p}{q}} = \sqrt[q]{x^{p}}; x > 0; q > 0$$

- 2. Add, subtract, multiply and divide simple surds.
- 3. Quadratic equations (by factorisation and by using the quadratic formula)
- 4. Quadratic inequalities in one unknown (Interpret solutions graphically.)
- NB: It is recommended that the solving of equations in two unknowns is important to be used in other equations like hyperbola-straight line as this is normal in the case of graphs
- Equations in two unknowns, one of which is linear and the other quadratic
- 6. Nature of roots

Parts

- Part 1: Quadratic equations
- Part 2: Quadratic Inequalities
- Part 3: Exponential equations
- Part 4: Surd equations
- Part 5: Simultaneous equations
- Part 6: Nature of roots
- Part 7: Fusion
- Part 8: More on Algebra, equations and inequalities

Formulae to be used in this section are not limited to the following:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

 $\Lambda = b^2 - 4ac$

(not provided in the information sheet)

Solve for *x*, rounded off to TWO decimal places where necessary:

1.
$$x^{2} = 5x - 4$$

2. $x(3-x) = -3$
3. $x(x-4) = 5$
4. $4x^{2} - 20x + 1 = 0$
5. $x(x-1) = 30$
6. $3x^{2} - 5x + 1 = 0$
7. $3x + \frac{1}{x} = 4$
8. $x = \frac{5}{3x - 2}$

Part 2

Solve for *x* , rounded off to TWO decimal places where necessary:

- $1. \qquad 3-x < 2x^2$
- $2. \qquad 15x 4 < 9x^2$
- $3. \qquad 4+5x > 6x^2$
- $4. \qquad 4x^2 + 1 \ge 5x$
- 5. $x^2 + 7x 8 < 0$
- 6. (x+1)(x-3) > 12
- 7. (x+1)(4-x) > 0
- 8. Given: (x+2)(x-3) < -3x+2
 - 8.1 Solve for x if: (x+2)(x-3) < -3x+2
 - 8.2 Hence or otherwise, determine the sum of all the integers satisfying the expression $x^2 + 2x 8 < 0$.

Solve for x, rounded off to TWO decimal places where necessary:

1. $2.3^{x} = 81 - 3^{x}$ 2. $9.2^{x-1} = 2.3^{x}$ 3. $2^{x\sqrt{x}} = 2^{27}$ 4. $27^{x^{2}+x} = 3^{3x^{2}} \times 9$ 5. $5^{x} = \frac{1}{125}$

Part 4

Solve for x, rounded off to TWO decimal places where necessary:

- $1. \qquad \sqrt{2x+1} = x-1$
- $2. \qquad 2x 3 = \sqrt{2x 3}$
- $3. \qquad 2\sqrt{x-3} = x-3$
- 4. $x \sqrt{x} = 6$

Part 5

1. Determine the values of x and y if they satisfy both the following equations simultaneously:

2x + y = 3x² + y + x = y²

2. Solve simultaneously for *x* and *y*:

$$y - x + 3 = 0$$
$$x^2 - x = 6 + y$$

3. Consider the equation: $x^2 + 5xy + 6y^2 = 0$

3.1 Calculate the values of the ratio $\frac{x}{y}$.

3.2 Hence, calculate the values of x and y if x + y = 8.

- 4. Solve for x and y if: $3^{x-10} = 3^{3x}$ and $y^2 + x = 20$.
- 5. Given: $2^x + 2^{x+2} = -5y + 20$

5.1 Express 2^x in terms of y.

- 5.2 How many solutions for x will the equation have if y = -4?
- 5.3 Solve for x if y is the largest possible integer value for which $2^{x} + 2^{x+2} = -5y + 20$ will have solutions.

- 1. Determine the nature of the roots of $x^2 + 9 = 0$.
- 2. Determine the values of k for which the equation $x^2 3x + (k+1) = 0$ has:
 - 2.1 Real roots
 - 2.2 One root equal to 1
- 3. Show that the equation $x^2 px p^2 = 2$ has two real and unequal roots for all real values of *p*.
- 4. The coefficients of a quadratic equation are rational numbers, and its discriminant is $\Delta = 2k(2k-9)$.

Describe the nature of the roots of the equation if k = 6.

- 5. If 5 is one root of the equation $x^2 + kx 15 = 0$, determine the value of k, and the other root.
- 6. Given: $f(x) = 3x^2 6x + m$

Determine the values of m if f(x) = 0 has non-real roots.

7. Given: $f(x) = x^2 - 5x + c$

Determine the value of c if it is given that the solutions of f(x) = 0 are $\frac{5 \pm \sqrt{41}}{2}$.

8. Given:
$$f(x) = 5x^2 + 6x - 7$$

- 8.1 Solve for x if f(x) = 0 (correct to TWO decimal places).
- 8.2 Hence, or otherwise, calculate the value of d for which $5x^2 + 6x d = 0$ has equal roots.
- 9. The solutions of a quadratic equation are given by $x = \frac{-2 \pm \sqrt{2p+5}}{7}$ For which value(s) of *p* will this equation have:
 - 9.1 Two equal solutions
 - 9.2 No real solutions

- 1. Given $x = 999\ 999\ 999\ 999$, determine the exact value of $\frac{x^2 4}{x 2}$. Show ALL your calculations.
- 2. Explain why the equation $\frac{x^4 + 1}{x^4} = \frac{1}{2}$ has no real roots.
- 3. If *m* and *n* are rational numbers such that $\sqrt{m} + \sqrt{n} = \sqrt{7 + \sqrt{48}}$, calculate a possible value of $m^2 + n^2$.
- 4. Calculate the exact value of:

$$\frac{\sqrt{10^{2009}}}{\sqrt{10^{2011}} - \sqrt{10^{2007}}}$$
 (Show ALL calculations.)

5. Calculate the integer that is the closest approximation to:

$$\frac{5^{2007} + 5^{2010}}{5^{2008} + 5^{2009}} \qquad \text{(Show ALL workings.)}$$

- 6. The volume of a box with a rectangular base is $3\ 072\ \text{cm}^3$. The lengths of the sides are in the ratio 1:2:3. Calculate the length of the shortest side.
- 7. Mary gave one third of her money to Nazeem and one fifth of her money to Elwethu. Elwethu received R28 less than Nazeem. How much money did Mary have originally?
- 8. Given: $m + \frac{1}{m} = 3$
 - 8.1 Determine the value of: $m^2 1 + \frac{1}{m^2}$.
 - 8.2 Hence determine the value of: $m^3 + \frac{1}{m^3}$.
- 9. ACDF is a rectangle with an area of $x^2 + 2x 8$ cm². B is a point on AC and E is a point on FD such that ABEF is a square with sides of length (x-2) cm each.

Calculate the length of ED.

November 2014

QUESTION 1

Solve for x:		
1.1.1	(x-2)(4+x)=0	(2)
1.1.2	$3x^2 - 2x = 14$ (correct to TWO decimal places)	(4)
1.1.3	$2^{x+2} + 2^x = 20$	(3)
Solve the fo	ollowing equations simultaneously:	
$x = 2y + 3$ $3x^2 - 5xy =$	24+16 <i>y</i>	(6)
Solve for x	(x-1)(x-2) < 6	(4)
The roots of a quadratic equation are: $x = \frac{3 \pm \sqrt{-k-4}}{2}$ For which values of k are the roots real?		(2) [21]
	Solve for x 1.1.1 1.1.2 1.1.3 Solve the for x = 2y + 3 $3x^2 - 5xy =$ Solve for x The roots o For which y	Solve for x: 1.1.1 $(x-2)(4+x)=0$ 1.1.2 $3x^2-2x=14$ (correct to TWO decimal places) 1.1.3 $2^{x+2}+2^x=20$ Solve the following equations simultaneously: x=2y+3 $3x^2-5xy=24+16y$ Solve for x: $(x-1)(x-2) < 6$ The roots of a quadratic equation are: $x = \frac{3 \pm \sqrt{-k-4}}{2}$ For which values of k are the roots real?

November 2015

QUESTION 1

1.1	x:		
	1.1.1	$x^2 - 9x + 20 = 0$	(3)
	1.1.2	$3x^2 + 5x = 4$ (correct to TWO decimal places)	(4)
	1.1.3	$2x^{\frac{-5}{3}} = 64$	(4)
	1.1.4	$\sqrt{2-x} = x - 2$	(4)
	1.1.5	$x^2 + 7x < 0$	(3)
1.2	Given: $(3x - y)^2 + (x - 5)^2 = 0$		
	Solve for a	and y.	(4)
1.3	For which	value of k will the equation $x^2 + x = k$ have no real roots?	(4) [26]

QUESTION 1

1.1	Solve for <i>x</i> :			
	1.1.1	x(x-7)=0	(2)	
	1.1.2	$x^2 - 6x + 2 = 0$ (correct to TWO decimal places)	(3)	
	1.1.3	$\sqrt{x-1} + 1 = x$	(5)	
	1.1.4	$3^{x+3} - 3^{x+2} = 486$	(4)	
1.2	Given:	$f(x) = x^2 + 3x - 4$		
	1.2.1	Solve for x if $f(x) = 0$	(2)	
	1.2.2	Solve for x if $f(x) < 0$	(2)	
	1.2.3	Determine the values of x for which $f'(x) \ge 0$	(2)	
1.3	Solve for	$x \text{ and } y: x = 2y \text{ and } x^2 - 5xy = -24$	(4) [24]	

Feb.-Mar. 2015

QUESTION 1

1.1	Solve for x:			
	1.1.1	$x^2 - x - 20 = 0$		(2)
	1.1.2	$2x^2 - 11x + 7 = 0$ (correct to TWO decimal places)	,	(3)
	1.1.3	$5x^2 + 4 > 21x$		(5)
	1.1.4	$2^{2x} - 6.2^{x} = 16$		(4)

1.2 Solve for x and y simultaneously:

$$y + 1 = 2x x^2 - xy + y^2 = 7$$
(6)

1.3 The roots of a quadratic equation are given by $x = \frac{-5 \pm \sqrt{20 + 8k}}{6}$, where $k \in \{-3; -2; -1; 0; 1; 2; 3\}$.

1.3.1 Write down TWO values of k for which the roots will be rational. (2)

1.3.2 Write down ONE value of
$$k$$
 for which the roots will be non-real. (1)

1.4 Calculate *a* and *b* if
$$\sqrt{\frac{7^{2014} - 7^{2012}}{12}} = a(7^b)$$
 and *a* is not a multiple of 7. (4)
[27]

Mathematics/P1		3 NSC	DBE/November 2019
QUEST	TION 1		
1.1	Solve for	<i>x</i> :	
	1.1.1	$x^2 + 5x - 6 = 0$	(3)
	1.1.2	$4x^2 + 3x - 5 = 0$ (correct to TWO decimal places)	(3)
	1.1.3	$4x^2 - 1 < 0$	(3)
	1.1.4	$\left(\sqrt{\sqrt{32}+x}\right)\left(\sqrt{\sqrt{32}-x}\right) = x$	(4)
1.2	Solve sim y + x = 12	ultaneously for x and y: and $xy = 14 - 3x$	(5)
1.3	Consider t Determine	the product $1 \times 2 \times 3 \times 4 \times \times 30$. It the largest value of k such that 3^k is a factor of this prod	uct. (4) [22]

Mathematics/P1

3 SC/NSC DBE/November 2020

QUESTION 1

1.1 Solve for x:

 $1.1.1 x^2 - 6x = 0 (2)$

1.1.2
$$x^2 + 10x + 8 = 0$$
 (correct to TWO decimal places) (3)

1.1.3
$$(1-x)(x+2) < 0$$
 (3)

1.1.4
$$\sqrt{x+18} = x-2$$
 (5)

1.2 Solve simultaneously for x and y:

$$x + y = 3$$
 and $2x^2 + 4xy - y = 15$ (6)

1.3 If *n* is the largest integer for which
$$n^{200} < 5^{300}$$
, determine the value of *n*. (3)

9

[22]

Mathematics/P1

DBE/Feb.-Mar. 2018

3 NSC

QUESTION 1

1.1 Solve for x:

 $1.1.1 \qquad x^2 - 6x - 16 = 0 \tag{3}$

1.1.2
$$2x^2 + 7x - 1 = 0$$
 (correct to TWO decimal places) (4)

1.2 List all the integers that are solutions to
$$x^2 - 25 < 0$$
. (4)

1.3 Solve for x and y:

-2y + x = -1 and $x^2 - 7 - y^2 = -y$ (6)

1.4 Evaluate:
$$\frac{3^{2018} + 3^{2016}}{3^{2017}}$$
 (2)

1.5 Given:
$$t(x) = \frac{\sqrt{3x-5}}{x-3}$$

1.5.1 For which values of x will
$$\frac{\sqrt{3x-5}}{x-3}$$
 be real? (3)

1.5.2 Solve for x if
$$t(x)=1$$
. (4)
[26]

May - June DBE/2022 3 Mathematics/P1 SC/NSC **QUESTION 1** Solve for *x*: 1.1 $x^{2} + 2x - 15 = 0$ (3) 1.1.1 $5x^2 - x - 9 = 0$ (Leave your answer correct to TWO decimal places.) 1.1.2 (3) 1.1.3 $x^2 \le 3x$ (4) Given: $a + \frac{64}{2} = 16$ 1.2 (3) 1.2.1 Solve for a. Hence, solve for x: $2^{x} + 2^{6-x} = 16$ (3) 1.2.2 Without using a calculator, calculate the value of $\sqrt{\frac{2^{1002} + 2^{1006}}{17(2)^{998}}}$ 1.3 (4) Solve for x and y simultaneously: 1.4 2x - y = 2 and $\frac{1}{x} - 3y = 1$ (6)

[26]

Bibliography

- 1. FET CAPS document
- 2. Mathematics Grade 12 Examination Guidelines
- 3. Grade 11 and Grade 12 previous year papers from national and different provinces